Mapping small DNA sequences by fluorescence in situ hybridization directly on banded metaphase chromosomes.
نویسندگان
چکیده
A procedure for mapping small DNA probes directly on banded human chromosomes by fluorescence in situ hybridization has been developed. This procedure allows for the simultaneous visualization of banded chromosomes and hybridization signal without overlaying two separate photographic images. This method is simple and rapid, requires only a typical fluorescence microscope, has proven successful with DNA probes as small as 1 kilobase, is applicable for larger probes, and will greatly facilitate mapping the vast number of probes being generated to study genetic disease and define the human genome. Human metaphase chromosomes were prepared from phytohemagglutinin-stimulated lymphocyte cultures synchronized with bromodeoxyuridine and thymidine. Probes were labeled with biotin-dUTP, and the hybridization signal was amplified by immunofluorescence. Chromosomes were stained with both propidium iodide and 4',6-diamidino-2-phenylindole (DAPI), producing R- and Q-banding patterns, respectively, allowing unambiguous chromosome and band identification while simultaneously visualizing the hybridization signal. Thirteen unique DNA segments have been localized to the long arm of chromosome 11 by using this technique, and localization of 10 additional probes by using radioactive in situ hybridization provides a comparison between the two procedures. These DNA segments have been mapped to all long-arm bands on chromosome 11 and in regions associated with neoplasias and inherited disorders.
منابع مشابه
Interphase and metaphase resolution of different distances within the human dystrophin gene.
Fluorescence in situ hybridization makes possible direct visualization of single sequences not only on chromosomes, but within decondensed interphase nuclei, providing a potentially powerful approach for high-resolution (1 Mb and below) gene mapping and the analysis of nuclear organization. Interphase mapping was able to extend the ability to resolve and order sequences up to two orders of magn...
متن کاملDirect visualization of single copy genes on banded metaphase chromosomes by nonisotopic in situ hybridization.
A rapid method is described for non isotopic in situ mapping of single copy genes directly on G-banded chromosomes by "one-step" regular light microscopy. It is based on hybridizing biotinylated probes to metaphase chromosomes. Biotin residues are detected by rabbit antibiotin antibody and anti-rabbit Ig labelled with peroxidase or colloidal gold. The peroxidase reaction product or colloidal go...
متن کاملMetaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes.
Fluorescence in situ hybridization (FISH) is a powerful tool for physical mapping in human and other mammalian species. However, application of the FISH technique has been limited in plant species, especially for mapping single- or low-copy DNA sequences, due to inconsistent signal production in plant chromosome preparations. Here we demonstrate that bacterial artificial chromosome (BAC) clones...
متن کاملMetaphase and interphase cytogenetics with Alu-PCR-amplified yeast artificial chromosome clones containing the BCR gene and the protooncogenes c-raf-1, c-fms, and c-erbB-2.
A human yeast artificial chromosome (YAC) library was screened by polymerase chain reaction with oligonucleotide primers defined for DNA sequences of the BCR gene and the protooncogenes c-raf-1, c-fms, and c-erbB-2. Alu-PCR-generated human DNA sequences were obtained from the respective YAC clones and used for fluorescence in situ hybridization experiments under suppression conditions. After ch...
متن کاملHigh-resolution mapping of mammalian genes by in situ hybridization to free chromatin.
Fluorescence in situ hybridization to metaphase chromosomes or chromatin fibers in interphase nuclei is a powerful technique in mapping genes and DNA segments to specific chromosome region. We have been able to release the chromatin fibers from cells arrested at G1 and G2 phases using different drugs and a simple alkaline lysis procedure. We have also demonstrated specific hybridization of fluo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 87 16 شماره
صفحات -
تاریخ انتشار 1990